Publikationen der FOR 5339

Hier finden Sie die Publikationen der FOR 5339, welche mit Unterstützung der DFG im Laufe der Projektes veröffentlicht wurden.

Titel Autor Quelle

Christoph Braun, Yanxiu Wuwang, Zhi Wang, Xuyang Hou and Tobias Käfer

The Third International Workshop on Semantics in Dataspaces, co-located with the Extended Semantic Web Conference, June 01, 2025, Portorož, Slovenia, Towards using the Solid Protocol for Data Transport in International Data Spaces (IDS)

Alexander Bott, Jan Baumgärtner, Nicolaus Klein, Alexander Puchta & Jürgen Fleischer 

Sustainable Manufacturing Innovations: Focus on New Energy Vehicles, Production Robots, and Software-Defined Manufacturing Proceedings of ICSM 2024, Shanghai, China, Towards a Generalised Information Modell: A Bayesian Network Approach for PPR-Representation 

Hendrik Mende, Saksham Kiroriwal, Julius Pfrommer, Robert H. Schmitt, Jürgen Beyerer

SPIE Optifab, 2023, Rochester, New York, United States

 

Multi-target regression and cross-validation for non-isothermal glass molding experiments with small sample sizes

 

Markus Walker, Marcel Reith-Braun, Uwe D. Hanebeck

Proceedings of the 28th International Conference on Information Fusion (FUSION 2025), pp. 1–8, Rio de Janeiro, Brazil, Local Calibration Testing in Supervised Machine Learning Models Using Input Space Kernels 

Hayk Amirkhanian, Markus Walker, Uwe D. Hanebeck, Marco F. Huber

Proceedings of the 28th International Conference on Information Fusion (FUSION 2025), pp. 1–8, Rio de Janeiro, Brazil, Bridging Bayesian Inference and Neural Network Training: Equivalence of KBNN and Statistical Linearization

Markus Walker, Hayk Amirkhanian, Marco F. Huber, Uwe D. Hanebeck

Proceedings of the 27th International Conference on Information Fusion (FUSION 2024), Venice, Italy, Trustworthy Bayesian Perceptrons

Uwe D. Hanebeck

Proceedings of the 26th International Conference on Information Fusion (Fusion 2023), Progressive Bayesian Particle Flows Based on Optimal Transport Map Sequences

Markus Walker, Uwe D. Hanebeck

Proceedings of the 2024 IEEE International Conference on Multisensor Fusion and Integration (MFI 2024), Pilsen, Czechia, Multi-Scale Uncertainty Calibration Testing for Bayesian Neural Networks Using Ball Trees

Niklas Freymuth, Philipp Dahlinger, Tobias Würth, Simon Reisch, Luise Kärger, Gerhard Neumann

NeurIPS 2023, Adaptive Swarm Mesh Refinement

 

Philipp Dahlinger, Niklas Freymuth, Michael Volpp, Tai Hoang, Gerhard Neumann

NeurIPS 2023 AI for Science Workshop,

 

Latent Task-Specific Graph Network Simulators

Tobias Würth,  Anabel Prietze, Clemens Zimmerling, Constantin Krauß, Luise Kärger 

NAFEMS-Magazin 2023, 68 (4), 39., Zeiteffiziente und datenfreie Bauteil- und Prozesssimulation mithilfe von Physics-Informed Neural Networks

Tobias Würth, Constantin Krauß, Clemens Zimmerling, Luise Kärger

Materials & Design, Volume 231, July 2023, 112034

Physics-informed neural networks for data-free surrogate modelling and engineering optimization 

 

Johannes Mitsch, Bastian Schäfer, Kärger Luise

Material Forming: The 28th International ESAFORM Conference on Material Forming - ESAFORM 2025, Paestum, Italy, Significance of the Material Parameters within a Three-Dimensional Solid-Shell Element for Thermoforming Simulation

Georg Zeeb, Johannes Mitsch, Michael Wilhelm, Luise Kärger and Frank Henning

Material Forming. 28th International ESAFORM Conference on Material Forming, ESAFORM 2025, Influence of gripper positions on the formation of wrinkles during the thermoforming process of thermoplastic UD-tape laminates

Josephine Rehak, Alexander Falkenstein, Jürgen Beyerer 

Machine Learning for Cyber-Physical Systems (ML4CPS), Causal structure learning using pcmci+ and path constraints from wavelet-based soft interventions

Arabizadeh, Negar, Julius Pfrommer, and Jürgen Beyerer

Machine Learning for Cyber Physical Systems: 79, How to quantify the maturity of production processes

Josephine Rehak , Shahenda Youssef , and Jürgen Beyerer

ML4CPS–Machine Learning for Cyber-Physical Systems, Root cause analysis using anomaly detection and temporal informed causal graphs

Josephine Rehak, Alexander Falkenstein, Frank Doehner, and Jürgen Beyerer

ML4CPS–Machine Learning for Cyber-Physical Systems, Metrics for the evaluation of learned causal graphs based on ground truth

Shahenda Youssef, Frank Doehner, Jürgen Beyerer

ML4CPS–Machine Learning for Cyber-Physical Systems, Regression via causally informed Neural Networks

Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese

Journal: Transactions on Graph Data and Knowledge, Volume 2, Issue 1, Seite 1-32, 2024:

Towards Representing Processes and Reasoning with Process  Descriptions on the Web

 

Johannes Mitsch, Bastian Schäfer, Jan Paul Wank, Luise Kärger

In Material Forming: ESAFORM 2024; Materials Research Forum LLC, 2024; pp 457–466, Considering the viscoelastic material behavior in a solid-shell element for thermoforming simulation

Shahenda Youssef, Julius Pfrommer, Jürgen Beyerer

IEEE Conference on Artificial Intelligence (CAI), Causal Temporal Neural Networks using the Conditional Average Treatment Effect

Saksham Kiroriwal, Julius Pfrommer, Hendrik Mende, Robert H. Schmitt, Jurgen Beyerer

IEEE 22nd International Conference on Industrial Informatics (INDIN) (pp. 1-6), Joint Parameter and State-Space Modelling of Manufacturing Processes using Gaussian Processes

Josephine Rehak, Anouk Sommer, Maximilian Becker, Julius Pfrommer, Jürgen Beyerer

IEEE 21st International Conference on Industrial Informatics (INDIN), Counterfactual root cause analysis via anomaly detection and causal graphs

Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, Gerhard Neumann,

ICLR 2023, Grounding Graph Network Simulators using Physical Sensor Observations

 

J. Rehak

Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), Daten-effiziente Aufklärung von kausalen Zusammenhängen in technischen Systemen durch Aktive Aufklärung und die Verwendung von Vorwissen

 

Johannes Mitsch, Constantin Krauß, Luise Kärger

Computer Methods in Applied Mechanics and Engineering 2024, 430, Interpolation methods for orthotropic fourth-order fiber orientation tensors in context of virtual composites manufacturing

Tobias Würth, Niklas Freymuth, Clemens Zimmerling, Gerhard Neumann, Luise Kärger

Computer Methods in Applied Mechanics and Engineering 2024, 429,  Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes

Markus Walker, Philipp S. Bien, Uwe D. Hanebeck

16th Symposium Sensor Data Fusion: Trends, Solutions, and Applications, Bonn, Germany, Voronoi Trust Regions for Local Calibration Testing in Supervised Machine Learning Models